

DIDRO

An innovative multi-sensor UAV solution for routine and emergency monitoring of levees

PARTNERS

INRAC

RÉPUBLIQUE	
FRANÇAIŠE	
- •1 . /	

Liberté Égalité Fraternité

Why DIDRO? **2010** – Storm Xynthia Failure and major damages to flood defenses along a coastline of 200 km; 47 people died

2011 – 40% of levees reported as in « bad condition »

Since 2011 – Strengthening of the French regulation for levee management

• High frequency of routine inspections

Guérande, Feb. 2010 © DREAL Pays de la Loire, 2010

La Faute-sur-Mer, Feb. 2010 © Sciences et Vies, 2014

 Continuous monitoring during hydrometeorological events

USUAL METHOD

- - Low efficiency - Security issues

- Difficult to access vegetated areas

ALTERNATIVE METHODS

+ Deployable during emergency

- - Costly - Highly qualified pilot

DIDRO = DIke (levee) monitoring by DROnes

Operationnal solution for **both routine and hydro**meteorological emergency monitoring of all types of levees

Detection of **disorders** on levees and in their immediate surroundings

Dedicated to levee managers and to public safety services

Benefits:

- High efficiency and flexibility
- Multi-sensors = improves disorders identification

What is **DIDRO**?

- Safe
- Complete solution

Centimetric to metric indicators of disorders:

- Seepage
- Animal burrows
- Settlement
- Erosion/scouring
- etc.

Data available on **3D web** platform after preprocessing

3 operational modes

emergency monitoring

During a flood / high waters

- Limited and skewed coverage

- Requires road on the crest

- Not deployable during emergency

Metric indicators of disorders:

- Breach initiation
- Crest or slope collapse
- Erosion on the water-side
- Risk of overtopping
- etc.

Real time visualisation of

Support to public safety

Imminent levee failure/ Levee has already failed

- Flooded buildings and roads
- Water height estimations
- People in flooded areas • etc.

Real time visualisation of data

INRAC

DIDRO

PARTNERS

GEOMATYS

RÉPUBLIQUE FRANÇAISE Liberté

Égalité

Fraternité

Payloads and UAVS

Routine and emergency monitoring How to easily and quickly mount **COPTER 4**

Manufactured by *Survey Copter* 40 km range Max. autonomy: 2.5 h

LIDAR

1.6 kg

(TIR)

1.0 kg

YellowScan

Visible (VIS) and

Thermal Infrared

T120 SurveyCopter

x 12 optical zoom

360° rotation

Surveyor

An innovative multi-sensor UAV solution for

routine and emergency monitoring of levees

Specific modular structure « clic-clac »

rements

Self-Potential electrodes

Electric potential measu-

Only if hydraulic head

QUADRO sensor

Water sampling

Towed by the UAV

Water quality measurements

Drifting target + GPS

<u>Dropped</u> by the UAV

Direction and speed of river flow

<u>Towed</u> by the UAV

Routine monitoring mode : full payload configuration

Thermal infrared (TIR) camera Infratec Variocam HD

YellowScan Surveyor

Thermal anomalies due to seepage + surface mapping

> DSM **Topographical anomalies** due to settlement, initiation of slope failure, etc.

Photogrammetry (VIS) **Visual detection of disorders** + Helps to interpret TIR and LIDAR data NIR: Vegetation state (hydric state of the levee)

Max. payload: 8.5 kg Adaptable to other types of UAVs Max. wind speed on ground: 10m/s Max. take-off weight: 30 kg Propulsion: petrol engine emergency monitoring:

Dense point cloud

Major

topographical

anomalies

Breaches, slope or

crest collapses,

etc.

Analog video

Signs of **levee**

failure or

overtopping

emergency monitoring mode :

configuration n°1

+ Near Infrared (NIR) cameras IGN Camlights 700 g

Visible (VIS)

LIDAR

1.6 kg

Support to public safety

First tests

5 m

Data acquisition on an experimental levee (CEREMA Rouen/EDF, France) R. Antoine and C. Fauchard (ENDSUM team, CEREMA)

Combination of 3D TIR and visible models Advanced data analysis and interpretation

Data acquisition on an levee along the Loire river (Bou, France) Artificial resurgence area

CEREMA ROUE

Research 900 and Camlights mounted on a DJI M600 Pro

Variocam HD

Photogrammetry 3D model from VIS imagery

Dense point cloud extracted from TIR imagery

Prospects

• Several tests during spring and summer 2019

12.5

Other applications:

Evolution of the coastline (CEREMA Rouen) Monitoring of cliff erosion using VIS photogrammetry + Combined with TIR photogrammetry for hydrological monitoring using surface temperature

→ Final demonstrator in September

The Vaches Noires cliffs (France) (R. Antoine and C. Fauchard, *Cerema/Endsum)*

Torrential floods in Alpine environments Analysis of forest stands and instable areas + deposition areas, type and size of deposits, etc.

Centre **Provence-Alpes-Côte d'Azur**

Contact:

Vincent Heurteaux (Geomatys): <u>vincent.heurteaux@geomatys.com</u> Rémy Tourment (INRAE): <u>remy.tourment@inrae.fr</u> Sérgio Palma-Lopes (Université Gustave Eiffel): <u>sergio.palma-lopes@univ-eiffel.fr</u> Marion Tanguy (IFSTTAR): <u>marion.tanguy@ifsttar.fr</u> Raphaël Antoine (CEREMA): <u>raphael.antoine@cerema.fr</u>

INRA

3275 route de Cézanne CS 40061 13182 Aix-en-Provence Cedex 5 (France) Tél. +33 (0)4 42 66 99 10 www6.paca.inrae.fr/recover/